IBISCHK Checks for IBIS-AMI DLL Integrity

Draft 2, 2 February 2016
LEGEND:

· Checks currently implemented are in green text.

· “Must” checks generate errors upon failure.

· “Should” checks generate warnings upon failure.

EXISTENCE CHECKS:
1. DLL/SO file named in second argument of each Executable line in IBS file must be present.
2. DLL/SO file must be suitable for machine architecture and address bit width designated by first argument of the Executable, Executable_TX, or Executable_RX lines.

3. DLL/SO file must export AMI_Init() and AMI_Close() functions in symbol table.

4. If corresponding AMI file contains GetWave_Exists=True, DLL/SO file must export AMI_GetWave() function in symbol table.

5. If corresponding AMI file contains Resolve_Exists=True, DLL/SO file must export the AMI_Resolve() and AMI_Resolve_Close() functions in its symbol table.

DEPENDENCY CHECKS:
6. DLL/SO file should not depend on external symbols not commonly found on distributions of the operating system declared as supported in the first argument of the Executable line. This is somewhat subjective, but it can be tested by running an IBISCHK that insures that each required symbol is found on a “clean” system with no installed software beyond the standard distribution.

7. DLL/SO file should not depend on external symbols that are commonly found but subject to subject to significant changes across operating system releases. This would include for example some “LIBM” math libraries.

8. DLL/SO file should not depend on symbols from proprietary libraries from a specific EDA tool vendor, unless they are provided with the model or freely available.

EXECUTION CHECKS:
9. The AMI_Init() function called with sample data should return successfully, with a return value of 1.

10. The AMI_Close() function called with sample data should return successfully, with a return value of 1.

11. If corresponding AMI file contains GetWave_Exists=True, the AMI_GetWave() function called with sample data should return successfully, with a return value of 1.

12. If corresponding AMI file contains Resolve_Exists=True, the AMI_Resolve() function called with sample data should return successfully, with a return value of 1.

13. If corresponding AMI file contains Resolve_Exists=True, the AMI_Resolve_Close() function called with sample data should return successfully, with a return value of 1.

14. If corresponding AMI file contains Init_Returns_Impulse=True, the impulse_matrix array passed to the AMI_Init() function should exhibit some data changes relative to the sample data passed in during a test.

IMPLEMENTATION NOTES:

Checks for the presence of exported code symbols can be implemented simply by using the same code used by EDA tools to find symbols in the DLL/SO files. For example, dlopen() and dlsym() on Linux, and LoadLibrary() and GetProcAddress() on Windows.

The DLL/SO functions will almost certainly depend on standard function symbols such as malloc() and free(), which will necessitate a dependency on some “LIBC” library. This cannot be statically linked into DLLs. Checks for required symbols might best be handled using existing programs written for that purpose. This is especially true for Windows, where declaration of required libraries is not required and the DLL might try to load and call one at any time during execution.

Subjective dependency checks might best be handled by printing the dependencies found as INFO items, for the user to verify.

Checks to see if functions return successfully would have to run in a separate process or thread, to avoid crashing IBISCHK before reporting results.

Execution tests might alternatively be handled using an existing unofficial IBIS-AMI evaluation toolkit, such as one donated by Cadence or SiSoft, or one adapted from PyIBIS.

Execution tests should include non-zero aggressors in an AMI_Init() call to test that an impulse_matrix with number_of_rows * (1 + aggressors) entries is supported.

